Cryo-EM uncovers the structure of tau filaments in Alzheimer's

Researchers at the Medical Research Council Laboratory of Molecular Biology (LMB) have revealed the atomic structures of one of the two types of abnormal filament which leads to Alzheimer's disease. The researchers, whose study was published recently in the journal Nature, believe the structures uncovered could also suggest how tau protein may form different filaments in other neurodegenerative diseases.

Alzheimer’s, the most common neurodegenerative disease, is characterised by the existence of two types of abnormal amyloid protein which form lesions in the brain. Tau forms filaments inside nerve cells (pictured) and amyloid-beta forms filaments outside cells. Tau lesions appear to have a stronger correlation with loss of cognitive ability in patients with the disease. 

The researchers extracted tau filaments from the brain of a patient who had died with Alzheimer's disease. The filaments were then imaged using cryo-electron microscopy (cryo-EM). Senior author Sjors Scheres and colleagues developed new software in order to calculate the structure of the filaments in sufficient detail to deduce the arrangement of the atoms inside. 

            Sjors Scheres said: “It is very exciting that we were able to use this new technique to visualise filaments from a diseased brain, as previous work depended on artificial samples assembled in the laboratory.  Amyloid structures can form in many different ways, so it has been unclear how close these laboratory versions resembled those in human disease.

            “Knowing which parts of tau are important for filament formation is relevant for the development of drugs. For example, many pharmaceutical companies are currently using different parts of tau in tests to measure the effect of different drugs on filament formation; this new knowledge should significantly increase the accuracy of such tests."

            Fellow senior author Michel Goedert said: “We have known for almost three decades that the abnormal assembly of tau protein into filaments is a defining characteristic of Alzheimer's disease. In 1998, the dysfunction of tau protein was shown to be sufficient for neurodegeneration and dementia. In 2009, the prion-like properties of assembled tau were identified. These properties allow the abnormal form to convert previously normal forms.

            “Until now the high-resolution structures of tau, or any other disease-causing filaments from human brain tissue, have remained unknown. This new work will help to develop better compounds for diagnosing and treating Alzheimer's and other diseases which involve defective tau.”

 

Other news

Meeting of Minds

Upcoming Events

UK NEQAS for Blood Coagulation: Providing an Anticoagulant Service

The Principal York Hotel, Station Road, York YO24 1AA
22 September 2017

IBMS Biomedical Science Congress

ICC, Birmingham
24-27 September 2017

UK NEQAS: Coordinating Point-of-Care Testing

Queen Elizabeth II Conference Centre, Broad Sanctuary, Westminster, London SW1 3EE
20 October 2017

British Association for Cytopathology

National Railway Museum, York
4 November 2017

Biosafety Practitioner Level 1 Training Course

Public Health England
15-19 January 2018

Latest Issue

Pathology In Practice

Pathology In Practice

Aug 2017

Screening for haemoglobinopathies

Register now to apply for regular copies of Pathology In Practice and free access to premium content, as well as our regular newsletters.